The classical Dirichlet space
نویسندگان
چکیده
D |f ′|2 dx dy. In particular, we will cover the basic structure of these functions their boundary values and their zeros along with two important operators that act on this space of functions the forward and backward shifts. This survey is by no means complete. For example, we will not cover the Toeplitz or Hankel operators on these functions, nor will we cover the important topic of interpolation. These topics are surveyed in a nice paper of Wu [64]. In order to make this survey more manageable, we will also restrict ourselves to this space of functions with finite Dirichlet integral and will not try to cover the many related Dirichlet-type spaces. We refer the reader to the papers [11, 41, 47, 54] for more on this.
منابع مشابه
Dirichlet series and approximate analytical solutions of MHD flow over a linearly stretching sheet
The paper presents the semi-numerical solution for the magnetohydrodynamic (MHD) viscous flow due to a stretching sheet caused by boundary layer of an incompressible viscous flow. The governing partial differential equations of momentum equations are reduced into a nonlinear ordinary differential equation (NODE) by using a classical similarity transformation along with appropriate boundary cond...
متن کاملEssential norm of generalized composition operators from weighted Dirichlet or Bloch type spaces to Q_K type spaces
In this paper we obtain lower and upper estimates for the essential norms of generalized composition operators from weighted Dirichlet spaces or Bloch type spaces to $Q_K$ type spaces.
متن کاملExistence Results for a Dirichlet Quasilinear Elliptic Problem
In this paper, existence results of positive classical solutions for a class of second-order differential equations with the nonlinearity dependent on the derivative are established. The approach is based on variational methods.
متن کاملSome study on the growth properties of entire functions represented by vector valued Dirichlet series in the light of relative Ritt orders
For entire functions, the notions of their growth indicators such as Ritt order are classical in complex analysis. But the concepts of relative Ritt order of entire functions and as well as their technical advantages of not comparing with the growths of $exp exp z$ are not at all known to the researchers of this area. Therefore the studies of the growths of entire functions in the light of thei...
متن کاملIntroducing of Dirichlet process prior in the Nonparametric Bayesian models frame work
Statistical models are utilized to learn about the mechanism that the data are generating from it. Often it is assumed that the random variables y_i,i=1,…,n ,are samples from the probability distribution F which is belong to a parametric distributions class. However, in practice, a parametric model may be inappropriate to describe the data. In this settings, the parametric assumption could be r...
متن کاملConvergence of Dirichlet Polynomials in Banach Spaces
Recent results on Dirichlet series ∑ n an 1 ns , s ∈ C, with coefficients an in an infinite dimensional Banach space X show that the maximal width of uniform but not absolute convergence coincides for Dirichlet series and for m-homogeneous Dirichlet polynomials. But a classical non-trivial fact due to Bohnenblust and Hille shows that if X is one dimensional, this maximal width heavily depends o...
متن کامل